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Abstract
Circadian clock proteins form an autoregulatory feedback loop that is central to
the endogenous generation and transmission of daily rhythms in behavior and
physiology. Increasingly, circadian rhythms in clock gene expression are being
reported in diverse tissues and brain regions that lie outside of the
suprachiasmatic nucleus (SCN), the master circadian clock in mammals. For
many of these extra-SCN rhythms, however, the region-specific implications
are still emerging. In order to gain important insights into the potential
behavioral, physiological, and psychological relevance of these daily
oscillations, researchers have begun to focus on describing the neurochemical,
hormonal, metabolic, and epigenetic contributions to the regulation of these
rhythms. This review will highlight important sites and sources of circadian
control within dopaminergic and striatal circuitries of the brain and will discuss
potential implications for psychopathology and disease  For example, rhythms.
in clock gene expression in the dorsal striatum are sensitive to changes in
dopamine release, which has potential implications for Parkinson’s disease and
drug addiction. Rhythms in the ventral striatum and limbic forebrain are
sensitive to psychological and physical stressors, which may have implications
for major depressive disorder. Collectively, a rich circadian tapestry has
emerged that forces us to expand traditional views and to reconsider the
psychopathological, behavioral, and physiological importance of these
region-specific rhythms in brain areas that are not immediately linked with the
regulation of circadian rhythms.
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Introduction
Circadian rhythms are observed when metabolic, psychological, 
and behavioral processes are modulated over the course of a day, 
even in the absence of environmental time cues1–7. These endog-
enously rhythmic processes are intimately linked with the func-
tion of circadian clocks and oscillators distributed throughout the 
brain and body; in mammals, they are coordinated by the master 
circadian clock located in the suprachiasmatic nucleus (SCN)8–11. 
The circadian autoregulatory feedback loop, which is composed of 
several core circadian clock genes, provides the molecular basis for 
both the generation and the output of these circadian clocks and 
oscillators12–16. Clock genes, and in particular the Period genes 
(e.g. Per1 and Per2), provide important circadian markers that help 
to highlight putative sites of circadian control as well as identify 
the environmental stimuli and internal signals that influence these 
region- and tissue-specific rhythms17–25. This omnipresent circadian 
system responds to the health and behavior of an individual, reacts 
dynamically to environmental pressures, and could interact with 
the progression and severity of several diseases26–28. Therefore, we 
must increasingly consider biological processes, lifestyle, health, 
and disease in the context of this ever-broadening understanding of 
the circadian system.

In the current review, we begin by highlighting several sites and 
sources of circadian regulation. In doing so, we aim to expand the 
“canonical” understanding of the circadian system and highlight 
region-specific interactions that have implications for the regu-
lation of metabolism, stress, and epigenetics. In the first section, 
we provide several examples of how these daily rhythms in clock 
gene expression can influence daily rhythms in behavior and 
physiology. Moreover, in addition to their canonical roles within 
the circadian clock, several clock genes are also pleiotropic tran-
scriptional regulators. Therefore, the expression of such clock 
genes may also interact with a range of other “non-circadian” cel-
lular and metabolic processes. Through these examples, we hope 
to lend support to the potential importance of striatal rhythms, 
where the links with behavior and psychopathology still remain 
largely speculative. In the second section, we go on to describe 
several examples where the circadian system influences dopamine 
systems of the brain and explore some recent examples in which 
daily rhythms in dopamine release and signaling are able to 
feedback to influence the daily rhythms of clock gene expression 
in the dorsal striatum. Finally, in the third section of this review, 
we build on this work and discuss the potential circadian influ-
ences as they relate to psychopathology, and the broader dopamine 
circuitry, with an emphasis on the nucleus accumbens (NAcc). 
A major goal of this review is to help researchers appreciate that 
daily rhythms in circadian clock gene expression can be important 
regulators of local brain function and encourage us all to strive 
towards a better understanding of these circadian and pleiotropic 
influences of region-specific rhythms in circadian clock gene 
expression.

Sites and sources of circadian control
Light is one major environmental cue that is able to produce phase 
adjustments in the SCN, the master circadian clock in mammals. 
Specifically, a subset of intrinsically photosensitive retinal ganglion 
cells (ipRGCs) makes projections from the retina to the SCN and 

functions to entrain the daily rhythms of clock gene expression in 
this structure with environmental light–dark cycles29–32. One of the 
most important aspects in this pathway is the time of day when 
light stimulation occurs, rather than the simple absence, presence, 
or amount of light4. For instance, light during the day will typically 
produce little or no change in the phase of the SCN. But light during 
the night will produce strong phase advances or phase delays within 
the SCN-based circadian clock, depending on when the nighttime 
light is delivered, and produce related shifts in downstream behav-
ioral and physiological rhythms33. Sometimes these light pulses can 
have adaptive effects that push the SCN back into synchrony with 
environmental cycles. But when artificial sources of light are used 
late at night, this can also push the SCN out of synchrony with the 
environment and could serve to exacerbate the same circadian dis-
ruptions that may have disrupted sleep in the first place. A growing 
literature has been supporting this hypothesis that light at night, 
acting through either the circadian clock or other light-responsive 
circuitry, can have negative consequences on sleep, health, mood, 
and disease34–36.

Daily rhythms in circadian clock gene expression have also been 
documented in many other tissues and nuclei of the brain and 
body, including the amygdala, hippocampus, oval nucleus of the 
bed nucleus of the stria terminalis, and olfactory bulbs17–20,23,37–39. 
However, extra-SCN oscillations of clock gene expression are not 
typically entrained by light directly. Instead they utilize neural, hor-
monal, metabolic, and neurochemical rhythms to remain entrained 
with the environment and maintain an appropriate internal organi-
zation with each other40–45. The demands, reactivity, and function 
of each brain area and tissue are highly region specific. Likewise, 
the daily oscillations of circadian clock gene expression are also 
region specific, and each region exhibits a unique peak, trough, 
and phase in local oscillations of clock gene expression24. As a 
result, we must also seek to better understand the influences on, and  
co-ordination between, the many extra-SCN circadian oscillators 
contained within the brain.

Daily oscillations in clock gene expression have been linked with 
specific functions in only a few cases. For instance, in the olfac-
tory bulb, it took several years after circadian rhythms in clock 
gene expression were first observed18 for a link to be made between 
these rhythms in clock gene expression and the control of olfac-
tory responsivity46,47. Likewise, daily rhythms in circadian clock 
gene expression in the adrenal gland have also been shown to be 
an important gating mechanism in the control of daily rhythms in 
glucocorticoid release14. In many other cases, however, the specific 
sites of circadian control remain unclear. For instance, changes in 
the light–dark cycle that simulate jet lag induce cognitive deficits 
that affect fear-conditioning48. While this effect likely involves the 
amygdala and/or hippocampus, the direct link between changes in 
fear-conditioning and circadian clock gene expression in either of 
these structures remains tentative. Moreover, global mutations in 
individual clock genes also produce important changes in behavior, 
neurochemistry, and mood49,50, but, again, the site(s) of circadian 
control that are relevant to these effects are still being identified. 
Therefore, these links between site-specific clock gene expression 
and functional consequences in behavior and physiology continue 
to be another ongoing and major challenge for future research.
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Metabolic processes are another major influence on, and conse-
quence of, the circadian system51–56. In rodents, restricting food-
availability to a single mealtime each day engages a network of 
food-entrainable oscillators in the brain57. Restricted feeding is a 
compelling area of study because it is a rare example of an explicitly 
circadian phenomenon that does not rely on the SCN58. However, 
the critical site(s) for circadian food-entrainment have remained 
elusive59–61 and the degree to which food-entrainment relies on 
circadian clock gene expression also remains unclear60,62,63. Even 
so, the daily patterns of circadian clock gene expression are respon-
sive to restricted feeding schedules, and this response is also region 
specific57. For example, restricted feeding schedules that provide 
daytime or nighttime meals will adjust circadian oscillations in 
some overlapping brain areas, but some of these effects will also 
depend on the mealtime rather than the restriction, per se42,43. 
The importance of the circadian time when food is consumed is  
further emphasized when rodents are fed a high-fat diet during 
either their active or their inactive period64. Such simple changes in 
the time of food availability/consumption can exacerbate or miti-
gate weight gain, even if the number of calories consumed does 
not change. The description of these complex interactions between 
the metabolic and circadian systems continues to be another major 
interest in the field. A better understanding of this interaction will 
highlight a secondary pathway, which, in addition to light, could be 
used to suggest appropriate mealtimes that produce adaptive adjust-
ments within the circadian system and help to “normalize” rhythm 
disruptions linked to jet lag, shift-work, or psychopathology.

Extra-SCN rhythms in clock gene expression integrate state 
variables and, depending on the tissue, can respond to a wide 
variety of environmental and hormonal cues. For example, the 
hypothalamic-pituitary-adrenal (HPA) axis provides an interesting 
example of interaction between the systems that regulate circadian 
rhythms and stress. There is a strong daily rhythm in the release 
of glucocorticoids from the adrenal that depends on the SCN8. 
Subsequently, these rhythms in glucocorticoid release are also 
crucial to the entrainment and maintenance of circadian rhythms 
in clock gene expression in parts of the limbic forebrain and 
amygdala41,65,66. Acute stressors, which produce a short-term 
peak in glucocorticoid release, also produce acute changes in the 
expression of certain clock genes in many of the same regions67,68. 
Therefore, in diseases like depression, where baseline and stress-
reactive changes in glucocorticoid release occur, it is becoming 
increasingly important to also consider the potential downstream 
effects on the rhythms of clock gene expression in the brain.

An emerging relationship also exists between circadian rhythms 
and the field of epigenetics. Epigenetics broadly refers to the study 
of modifications to the chromatin structure of DNA, which help 
to regulate gene expression without altering the underlying genetic 
code. Chromatin is composed of DNA wrapped around an octamer 
of histone proteins that form the nucleosome. Post-translational 
modifications to the N-terminal tails of histones are involved in 
diverse biological processes such as transcriptional activation 
and inactivation, chromosome packaging, and DNA damage and 
repair69,70. The histone modifications that produce these diverse 
effects include acetylation, methylation, phosphorylation, and 

ubiquitination. In addition to acting within the circadian autoreg-
ulatory feedback loop, clock proteins such as CLOCK, PERIOD 
(PER), and CRYPTOCHROME (CRY) also facilitate some of 
these epigenetic processes71. Specifically, CLOCK acts within 
the canonical circadian feedback loop, but it is also a histone 
acetyltransferase72. Acetylation of the histone tail neutralizes 
the positive charge and renders the chromatin more “open”. This 
conformational state is associated with active transcription and 
gene expression73 and is facilitated by histone acetyltransferases 
such as CLOCK. Moreover, PER and CRY provide negative  
feedback within the circadian loop and, as it turns out, also recruit 
SIN3A/SIN3B and go on to associate with histone deacetylases 
that remove acetyl groups from the histone tails and limit gene 
transcription74,75. The time course of these epigenetic effects 
remains unclear but is possibly relevant for hour-to-hour changes 
that are observed across the 24-hour cycle. Moreover, in conditions 
where clock genes are mutated or where single-nucleotide polymor-
phisms create lasting changes in circadian clock protein function, 
the epigenetic consequences could have additional life-long or 
even trans-generational consequences.

Epigenetic effects also lie at the interface between metabolic and 
circadian rhythms71. In particular, nicotinamide adenine dinucle-
otide (NAD+) is involved in reduction–oxidation reactions, which 
are key to metabolism at the cellular level and are rhythmic over 
24 hours76. As a result of these daily rhythms, NAD+ is ideally 
positioned to respond to restricted feeding schedules that limit 
food-availability to a single meal each day. Downstream of this 
response, NAD+ is also a cofactor for SIRTUIN (SIRT) proteins, 
which are also histone deacetylases77–79. This epigenetic pathway 
is a compelling possibility for how restricted feeding schedules 
feedback onto and modulate diverse clock-controlled processes. 
These metabolic pathways may also be differentially important 
depending on which brain area or tissue is examined. Consistent 
with this idea, the shifts that are observed in the daily oscillations 
of clock gene expression produced by restricted feeding schedules 
are typically region specific42,43,57. As a result, such entrainment 
mechanisms would appear to interact and “summate” with the 
other hormonal and neurochemical signals, which also influ-
ence clock gene expression in a region-specific manner outside 
of the SCN45,66. Collectively, these findings point to a distributed 
response, which influences several brain areas, interacts with many 
biological systems, and helps to highlight several brain areas that 
are sensitive to the effects of feeding.

Dopamine, drugs, and disease
The dopamine systems of the brain have been implicated in many 
aspects of behavior, from fundamental motor control and endocrine 
release to higher-order processing like prediction error and  
attention80. Dopamine systems also interact with the expression 
of circadian clock genes. For instance, in the retina, dopamine 
synthesis and receptors are adjusted in response to light, and 
dopamine signaling goes on to influence the expression of clock  
genes81–83. There is also a growing interest in the potential  
interactions between dopamine systems and circadian rhythms 
in the brain84,85. Drugs of abuse such as cocaine and ampheta-
mine act, in part, through the dopamine system to increase 
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locomotor activity in rodents. When PER1- and PER2-mutant 
mice are tested, the acute effects of these drugs can be quite 
similar between mutants and wild-type controls, but locomotor  
sensitization is fundamentally changed in the mutant mice49. 
Studies have also shown that drugs of abuse can also induce 
the expression of several circadian clock genes in the dorsal 
striatum86, which demonstrates another reciprocal interaction 
between these two systems. While these initial findings supported 
the general hypothesis that certain clock-related processes can 
influence dopamine plasticity and function, they did not determine 
the sites of action or the directionality of these effects. Therefore, a 
major goal in this area has been to uncover the brain areas and the 
molecular processes underlying these interactions.

One area of overlap between these two systems is found in the 
demonstration that the expression of enzymes integral to the pro-
duction and metabolism of dopamine is influenced by circadian 
clock genes. In particular, an enzyme that is involved in dopamine 
metabolism, monoamine oxidase A (MAOa), is clock controlled  
and influences mood-related behaviors87. Likewise, the rate- 
limiting enzyme in the production of dopamine, tyrosine hydroxy-
lase (TH), is also regulated by the circadian clock50,88,89. Beyond 
the synthesis and metabolism, dopamine release also goes on to 
provide a robust circadian drive that makes important contributions 
to rhythms in behavior and physiology. For instance, melatonin 
release from the pineal gland is highly rhythmic and often used 
as a circadian marker in human studies. The release of melatonin 
also relies on the heteromerization of adrenergic receptors with 
dopamine D4-receptors, which positions dopamine as an important 
regulator of pineal function90. Likewise, daily rhythms in dopamine 
have also been observed in other hypothalamic neuroendocrine 
neurons, which control the precisely timed release of reproduc-
tive hormones such as prolactin. These dopamine neuroendocrine 
neurons also express circadian clock genes, which provide some 
of the circadian regulation within this system91,92. So, depending 
on where we look in the brain, dopamine could be an important 
input to the daily rhythms of circadian clock gene expression, or 
dopamine could also function as an important daily cue that goes on 
to provide a diurnal/circadian signal to other brain areas or neural 
systems.

Dopamine cell bodies in the ventral tegmental area (VTA) and 
substantia nigra (SN) of the ventral midbrain hold tremendous 
importance for motivation and emotion. Dopamine cell bodies 
in the VTA make several distinct projections and provide major 
dopamine input to the ventral striatum, cortex, and limbic system. 
In contrast, dopamine cell bodies in the SN are best known for their 
roles in motor functions and project mainly to the dorsal striatum93. 
Because of their profound behavioral relevance, there has also 
been a growing interest in understanding the behavioral and neu-
rochemical implications of the circadian clock(s) related to these 
circuits94. In particular, dopamine release provides a robustly 
rhythmic signal in both the dorsal and the ventral striatum95. Spe-
cifically in nocturnal rats, during the night when these rodents 
are most active, extracellular dopamine levels in the striatum are 
elevated45,96,97. Daily changes in dopamine production, transport, 

reuptake, and metabolism could also help to increase the amplitude 
of daily rhythms within this system95,98. Daily rhythms in dopamine 
release within this circuitry also produce circadian rhythms in 
several electrophysiological parameters such as local field poten-
tial, firing frequency, and coherence99. Therefore, daily rhythms in 
dopamine release from VTA and SN projections to the dorsal and 
ventral striatum could provide an important daily drive that goes on 
to influence motivation, emotion, and ultimately behavior94.

Robust daily rhythms in PER2 expression are also observed in 
both the dorsal and the ventral striatum24,37,100–102. Therefore, we 
and others have become interested in describing the importance 
of dopamine for the maintenance, entrainment, and generation of 
rhythms in clock gene expression in the striatum45. To this end, we 
have used unilateral injections of 6-hydroxydopamine (6-OHDA) 
in the medial forebrain bundle to lesion dopamine projections on 
one side of the brain and study the effects on daily rhythms of 
PER2 expression in the dorsal striatum. Compared to the devastat-
ing behavioral effects of bilateral lesions, unilateral lesions allow 
the rodents to remain healthy. These rodents continue to exhibit 
relatively normal rhythmicity in many aspects of behavior and 
physiology103, but dopamine denervation causes a significant 
decrease in the amplitude of the rhythm of PER2 expression on 
the lesioned side45. After these initial observations, we went on to 
use systemic administration of pharmacological dopamine recep-
tor antagonists or agonists to describe the receptor specificity of 
PER2 expression rhythms in the dorsal striatum. Under ad libitum 
feeding conditions, we found that dopamine appeared to be acting 
through D2-receptors to synchronize PER2 expression rhythms in 
the medium spiny neurons of the dorsal striatum45. However, another 
study recently used D1-receptor knockout mice under restricted 
feeding conditions and found blunted PER2 expression rhythms in 
the dorsal striatum of mutant mice104. These findings suggest that 
the D1 and D2 specificity may not be as clear as the pharmacol-
ogy initially indicated or that these effects may also depend on 
feeding conditions. A D2-receptor-specific effect would be con-
sistent with other observations in the striatum and retina82,83,105,106 
and could point to a more general pathway that links dopamine 
signaling with effects on circadian clock gene expression.  
However, because robust dopamine receptor antibodies are largely 
unavailable, moving forward, we must rely on genetic approaches 
that can reliably differentiate D1- and D2-receptor-containing  
neurons in the striatum.

The amplitude of the daily rhythm in dopamine release from VTA 
and SN terminal regions may also contribute to the amplitude of 
rhythms in clock gene expression45,96,97. We have already shown 
that dopamine release and clock gene expression is intimately 
linked in the dorsal striatum45. The amplitude of this rhythm,  
however, could be a major factor driving clock gene expression 
within the ventral striatum as well. In line with this hypothesis, 
large amplitude rhythms in dopamine release are observed in the 
NAcc core, while smaller amplitude rhythms are observed in the 
shell95. Likewise, large amplitude rhythms in PER2 expression 
are observed in the NAcc core, while smaller amplitude rhythms 
are observed in the shell24. One could therefore speculate that the 
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rhythmic release of dopamine may also serve as an important driver 
of circadian clock gene expression throughout both the dorsal and 
the ventral striatum.

The ability of dopamine to cause changes in clock gene expres-
sion could also have a number of important implications for 
disease severity and treatment. For instance, in conditions such 
as Parkinson’s disease, dopamine projections to the dorsal stria-
tum degenerate. Reduced dopamine input would then likely blunt 
daily rhythms in clock gene expression in the striatum of these 
patients and could be an important consideration in the etiology of 
circadian disruptions linked with this disorder84. Moreover, drug 
treatments that produce a surge of dopamine release, such as 
methamphetamine or cocaine, also produce alterations in the 
expression of several core circadian clock genes in both the  
dorsal and the ventral striatum37,107–110. This general principle  
could also be applied to virtually any prescription drug treat-
ment that is given systemically and which acts as an agonist or  
antagonist of dopamine signaling. For example, methylphenidate 
is used in the treatment of attention deficit hyperactivity disorder 
and produces elevated dopamine release. This surge in dopamine 
release could go on to influence the daily rhythms of clock gene 
expression for hours or days, long after the drug itself has worn 
off. Conversely, several antipsychotics used in the treatment of  
schizophrenia have historically antagonized dopamine receptors, 
which could also blunt striatal rhythms in clock gene expression. 
In summary, the broadening tapestry of circadian control could be  
implicated in a wide range of disorders, and these circadian con-
siderations would seem to highlight several potential benefits  
and/or pitfalls of many treatment options.

Diverse and reciprocal effects of dopamine on the circadian 
system and the circadian system on dopamine still leave the 
causal relationship(s) between these two systems unclear. Novel 
therapeutic avenues could be raised through a better understanding 
of these interactions, which could go on to help patients improve 
nighttime sleep, improve daytime alertness, help reduce symptoms, 
or help confine symptoms to a time of day when they are more 
tolerable. Such chronotherapeutic improvements will probably 
end up being the result of careful timing of prescription pharma-
ceuticals in conjunction with the appropriate management and  
timing of other environmental stimuli (e.g. light and food). A 
better understanding of the times of day when symptoms are  
consistently better or worse may also be able to guide patients 
towards an improved general understanding of their own  
conditions.

Psychopathology
The general links between disrupted circadian rhythms and the 
symptoms of psychopathology have been discussed for some time. 
Indeed, major depressive disorder, bipolar disorder, and seasonal 
affective disorder all exhibit links with certain polymorphisms in 
clock genes111–113. Recently, however, specific brain areas that are 
relevant to the circadian control of psychopathological symptoms 
have also started to be uncovered. Generally, stressful stimuli can 
be used to induce depression-like phenotypes in rodents, and this 
has provided several interesting models to study depression. In 
one such animal model of depression, unpredictable chronic mild 

stress was shown to change the amplitude of rhythms of clock gene 
expression in the NAcc25. Importantly, the severity of this blunting 
of NAcc rhythms was correlated with the severity of depression- 
like behaviors in these same mice, and this has provided a  
compelling link between circadian rhythms in the NAcc, stressors, 
and symptom severity within this model of depression.

Circadian rhythms in the NAcc have also been shown to be affected 
in another model of depression, which uses learned helplessness to 
induce a depressive phenotype in rodents. Remarkably, this model 
also produces blunted circadian rhythms in the NAcc114, which 
provides converging evidence for the link between symptoms of 
depression and rhythms within the NAcc. However, it is not yet 
known whether changes in circadian rhythm are a cause or conse-
quence of stress or depression. In addition, both groups have also 
reported changes in the amplitude of clock gene expression within 
the SCN, which were also associated with depression-related 
behaviors25,115, and it is another major challenge to dissociate SCN 
and extra-SCN effects. However, the ability to induce site-specific 
disruptions of circadian clock gene expression may eventually 
help to highlight and differentiate SCN from extra-SCN circadian 
contributions to psychopathology, and we look forward to stud-
ies that disrupt the expression of circadian clock genes selectively 
within the dorsal or ventral striatum.

Other brain areas could also make direct and indirect contributions 
to activity within these dopamine circuits. For many years, we 
have known that the habenula can inhibit the activity of dopamine 
neurons in the VTA and SN116. The habenula also exhibits daily 
oscillations in neuronal firing, and certain cells either fire or 
suppress firing in response to environmental light117,118.  
Remarkably, a more recent paper has shown that the lateral 
habenula also responds to learned helplessness119, the same model 
of depression used by Landgraf et al. Therefore, because the 
habenula receives inputs from midbrain dopamine structures120 and 
provides feedback to the VTA121, we suggest that it could also pro-
vide important diurnal influences on the VTA. Another source of  
circadian regulation of dopamine circuitry also comes from the 
medial prefrontal cortex (mPFC). When the mPFC is lesioned, 
rhythms of cFos immunoreactivity in the NAcc are severely 
blunted without affecting daily rhythms in cFos immunoreac-
tivity in the VTA122. Inactivation experiments have shown that 
the mPFC can also blunt the diurnal rhythm in amphetamine  
reward123, suggesting that the mPFC can modulate the circa-
dian properties of this dopamine circuitry. Thus, in addition to  
endogenous rhythmicity and clock gene expression within the 
NAcc, there are other circadian influences from the mPFC as well 
as light-responsive and stress-responsive rhythms from the lat-
eral habenula that should also be considered. As a result, we must  
continue to strive to consider the behavioral implications at a  
network level rather than focusing too much on any single node.

Conclusions
It is a major challenge to describe interactions within the broaden-
ing context of the circadian system, which contains multiple loci of 
control and feedback. The effects of glucocorticoids, for instance, 
could represent an important interface between circadian regulation 
and psychopathology. The effects of neurotransmitters such as 
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dopamine on clock gene expression provide another level of  
analysis, which could link diseases and disorders with circadian 
disruptions and symptoms. Region-specific rhythms of clock gene 
expression are sensitive to hormonal and neurochemical controls, 
but this also varies from region to region. The importance of these 
interactions between circadian systems and health is further empha-
sized by the finding that frequent changes in the light–dark cycle 
challenge the circadian system and have been shown to shorten 
lifespan124. In order to advance our understanding of the implica-
tions for health and disease, we must first encourage all researchers 
to consider the circadian influences within their own given areas of 
expertise. It is no longer enough to simply control for the time of 
day; instead, we should each strive to understand how these daily 
fluctuations are influencing research and findings in our respective 
areas.
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